Abstract

AbstractThis paper deals with nonlinear random vibrations of a beam comprising a fractional derivative element; the nonlinear term arises from the assumption of moderately large beam displacements. It is shown that the beam response can be determined reliably via an optimal statistical linearization procedure. Specifically, the solution is obtained by utilizing an appropriate iterative representation of the stochastic response spectrum, which involves the linear modes of vibration of the beam. Such a representation allows retaining the nonlinearity in the time-dependent part of the response, which, in turn, is linearized in a stochastic mean square sense. The reliability of the proposed approximate solution is assessed in relation to the results of relevant Monte Carlo simulations. In this regard, a boundary integral method (BIM)–based algorithm is employed, in conjunction with a Newmark integration scheme, for estimating the beam response from spectrum-compatible realizations of the excitation, while acc...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.