Abstract
The effects of nonlinear oscillations in compact stars are attracting considerable current interest. In order to study such phenomena in the framework of fully nonlinear general relativity, highly accurate numerical studies are required. A numerical scheme specifically tailored for such a study is based on formulating the time evolution in terms of deviations from a stationary equilibrium configuration. Using this technique, we investigate over a wide range of amplitudes nonlinear effects in the evolution of radial oscillations of neutron stars. In particular, we discuss mode coupling due to nonlinear interaction, the occurrence of resonance phenomena, shock formation near the stellar surface as well as the capacity of nonlinearities to stabilize perturbatively unstable neutron star models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.