Abstract

Classical electromagnetism is linear. However, fields can polarize the vacuum Dirac sea, causing quantum nonlinear electromagnetic phenomena, e.g., scattering and splitting of photons, that occur only in very strong fields found in neutron stars or heavy ion colliders. We show that strong nonlinearity arises in Dirac materials at much lower fields ∼1 T, allowing us to explore the nonperturbative, extremely high field limit of quantum electrodynamics in solids. We explain recent experiments in a unified framework and predict a new class of nonlinear magnetoelectric effects, including a magnetic enhancement of dielectric constant of insulators and a strong electric modulation of magnetization. We propose experiments and discuss the applications in novel materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call