Abstract

We report on the generation of GW-class peak power, 35-fs pulses at 2-µm wavelength with an average power of 51 W at 300-kHz repetition rate. A compact, krypton-filled Herriott-type cavity employing metallic mirrors is used for spectral broadening. This multi-pass compression stage enables the efficient post compression of the pulses emitted by an ultrafast coherently combined thulium-doped fiber laser system. The presented results demonstrate an excellent preservation of the input beam quality in combination with a power transmission as high as 80%. These results show that multi-pass cell based post-compression is an attractive alternative to nonlinear spectral broadening in fibers, which is commonly employed for thulium-doped and other mid-infrared ultrafast laser systems. Particularly, the average power scalability and the potential to achieve few-cycle pulse durations make this scheme highly attractive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.