Abstract

AbstractA new procedure for synthesis of nonlinear proportional and nonlinear rate-feedback controllers for use with unstable nonlinear systems with application to a direct drive inverted pendulum is presented. The approach is to stabilize the nonlinear system followed by generation of the corresponding describing function models at various operating regimes of interest. With the known stabilizing controller and the stabilized frequency domain models, the frequency domain models of the unstable plant are algebraically extracted. A computer-aided design technique is used, and a set of proportional plus rate feedback controllers for the set of obtained open-loop frequency domain models is designed. The table of rate feedback gains as a function of rate feedback block input amplitudes is treated as the describing function model of the unknown nonlinear rate feedback gain; describing function inversion is used to obtain the nonlinear rate feedback gain. One linear proportional controller at an arbitrary opera...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call