Abstract
Nonlinear characteristics including spatial chaos and patterns associated with relativistically intense laser-plasma interaction are studied theoretically and numerically using a model relativistic nonlinear Schrödinger equation. It is shown that in the phase space irregular homoclinic orbit crossings exist. The latter are verified and investigated numerically. The spatial chaos and complex patterns of the laser wave field can be attributed to the relativistic electron mass variation as well as the ponderomotive-force driven electron-density modulation. The formation of complex patterns results from stochastic partition of energy in the Fourier modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.