Abstract

High purity chalcogenide glasses were prepared in the series As2S(3−x)Sex where x=0 to 3. The measured third order non-linearities increase with the value of x, and are up to about 1000 times larger than silica for As2Se3 glass. We show that the anharmonic oscillator model, using the normalized photon energy, gives an excellent fit to the data over three orders of magnitude. Single mode optical fibers based on As2S3 and As2Se3 glasses have been fabricated using the double crucible technique and the Stimulated Brillouin Scattering (SBS) investigated. The threshold intensity for the SBS process was measured and used to estimate the Brillouin gain coefficient. Preliminary results indicate record high values for the figure of merit and theoretical gain, compared to silica, which bodes well for slow-light based applications in chalcogenide fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.