Abstract

The propagation of a short intense laser pulse in the femtosecond range in a hollow metallic waveguide gives rise to heating of the metallic wall. The temperature of the degenerate electron gas in the wall is increased during the pulse duration and this heating affects the propagation and dissipation of the laser pulse. Analytical and numerical analysis shows that, as the dissipation is increased, the leading edge of the pulse decreases more slowly than the rear, resulting in a pulse shortening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call