Abstract

The nonlinear propagation of an intense Laguerre–Gaussian (LG) laser pulse in a parabolic preformed plasma channel is analyzed by means of the variational method. The evolution equation of the spot size is derived including the effects of relativistic self-focusing, preformed channel focusing, and ponderomotive self-channeling. The parametric conditions of the LG laser pulse and plasma channel for propagating with constant spot size, periodically focusing and defocusing oscillation, catastrophic focusing, and solitary waves are obtained. Compared with the laser pulse with fundamental Gaussian (FG) mode, it is found that the effect of vacuum diffraction is reduced by half and the effects of relativistic and wakefield focusing are decreased by a quarter due to the hollow transverse intensity profile of the LG laser pulse, while the effect of channel focusing is the same order of magnitude with that of the FG laser pulse. Thus, the matched condition for the intense LG laser pulse with constant spot size is released obviously, while the parameters of the laser and plasma for the existence of solitary waves nearly coincide with those of the FG laser pulse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call