Abstract

A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Karman large deflection theory, the nonlinear vibration governing equation is obtained by using Hamilton’s principle and the Rayleigh-Ritz method. The harmonic balance method (HBM) is used to analyze the first-order approximate response and obtain the frequency response function. The system shows non-linear phenomena such as hardening nonlinearity, multiple coexistence solutions, and jumps. The effects of the temperature difference, the damping coefficient, the plate thickness, the excited charge, and the mode on the primary resonance response are theoretically analyzed. With the increase in the temperature difference, the corresponding frequency jumping increases, while the resonant amplitude decreases gradually. Finally, numerical verifications are carried out by the Runge-Kutta method, and the results agree very well with the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.