Abstract

This paper presents the implementation of a system that deals with static friction (stiction) in electropneumatic control valves, one of the most common nonlinearities that causes problems such as limit cycles and consequently wear of the valve and its moving parts, as well as losses in production and maintenance costs. This system is composed of a nonlinear predictive controller with adjustable constraints and an online database for estimation of the stiction parameters. The predictive controller uses constraints on the valve speed during its excursion, as well as constraints on the control signal to bring the valve to the desired position and slip it when necessary. The strategy adopted also showed robustness, being able to cope with changes in the spring and stiction parameters, which caused mismatch between the model and the controller and consequently loss of performance or even instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.