Abstract

A wavelet network-based nonlinear excitation control is designed to enhance the transient stability of a power system. The power system model used to improve the transient stability via excitation control can be written in the canonical form. The resulting excitation control signal that achieves a prescribed tracking performance is shown to include unknown nonlinear terms. A wavelet network is constructed to generate an approximation of these nonlinear terms and hence facilitate the design of the nonlinear excitation controller. Based on the wavelet network approximation, suitable adaptive control and appropriate parameter update algorithm are developed to force the nonlinear uncertain power system to track a prescribed trajectory with desired dynamic performance. It is shown that the proposed controller achieves ultimately bounded tracking error and boundedness of the closed loop signals. A single machine infinite bus system with uncertain fault location is presented to illustrate the proposed design procedure and exhibit its performance. The performance of the proposed excitation controller is compared with the classical IEEE-type ST1A static exciter equipped with a power system stabilizer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.