Abstract

This paper presents a control design methodology that begins to address high penetration of renewable energy sources into networked AC microgrid systems. To bring about high performing microgrid systems that contain large amounts of stochastic sources and loads is a major goal for the future of electric power systems. Alternative methods for controlling and analyzing AC microgrid systems will provide understanding into tradeoffs that can be made during the design phase. This paper utilizes a control design methodology, based on Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) [1] that regulates renewable energy sources, loads and identifies energy storage requirements for an AC microgrid system. Both static and dynamic stability conditions are derived for the AC microgrid system. Numerical simulations are performed to demonstrate stability and performance. Two scenarios are considered; i) simple random stochastic renewable source and load AC Microgrid example and ii) a random variable pulse load application for Navy ship AC microgrid systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.