Abstract

The nonlinear interaction between two intense counterpropagating laser beams in an isotropic optical fiber may lead to spatiotemporal polarization instabilities of both waves. Experiments with various mutual polarization arrangements and different powers of the two counterpropagating input beams showed that nonlinear birefringence may lead to significant polarization cross switching of both beams. In the case of two counterrotating circular input waves, the cross-polarization interaction of the beams led to the generation of a polarization kink or domain wall soliton. This soliton is formed by a superposition of counterpropagating waves that represent switching of the state of polarization of light between two domains where both waves are circularly polarized and corotating. The experimental observations are found to be in good agreement with the theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.