Abstract
Swollen stacks of finite-size disclike Laponite clay platelets are investigated within a Wigner-Seitz cell model. Each cell is a cylinder containing a coaxial platelet at its center, together with an overall charge-neutral distribution of microscopic co and counterions, within a primitive model description. The nonlinear Poisson-Boltzmann (PB) equation for the electrostatic potential profile is solved numerically within a highly efficient Green's function formulation. Previous predictions of linearized Poisson-Boltzmann (LPB) theory are confirmed at a qualitative level, but large quantitative differences between PB and LPB theories are found at physically relevant values of the charge carried by the platelets. A hybrid theory treating edge effect at the linearized level yields good potential profiles. The force between two coaxial platelets, calculated within PB theory, is an order of magnitude smaller than predicted by LPB theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.