Abstract

AbstractThe finite‐time nonlinear placement problem of networked Euler‐Lagrange systems (NELSs) is discussed in this paper. The problem is reformulated into a finite‐time aggregate game under an undirected graph. Then, several novel practical gradient‐based finite‐time hierarchical (GFTH) algorithms composed of a game layer, a Nash equilibrium (NE) seeking layer, and a control layer are proposed. Specifically, the game layer employs an aggregate function to reach a consensus on the potential aggregate value which is adopted by a gradient‐based finite‐time method to tackle the finite‐time NE seeking problem in the NE seeking layer, and then, the tracking problem is realized in the control layer. The convergence results are established by a nonsmooth Lyapunov function. In addition, the versatility of the GFTH algorithms is shown by extending to address the task‐space control problem of NELSs. The effectiveness of the proposed algorithms is illustrated via simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.