Abstract

In this research, nonlinear sliding mode pitch control of a wind turbine has been investigated by considering aerodynamic nonlinearities. For modeling aerodynamic interaction between the wind and the drive-train system, blade element momentum theory is used by considering Prandtl’s tip loss factor and Glaurt correction. Finally, the two-degrees of freedom model of the drive-train is extracted and the sliding mode approach is examined for regulating the output power into its nominal value by controlling the pitch angle. The implementation of the above proposed control law in its related electronic circuit of the wind turbine will be considered as the future stage of the current research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.