Abstract

All-optical signal processing on nonlinear photonic chips is a burgeoning field. These processes include light generation, optical regeneration and pulse metrology. Nonlinear photonic chips offer the benefits of small footprints, significantly larger nonlinear parameters and flexibility in generating dispersion. The nonlinear compression of optical pulses relies on a delicate balance of a material's nonlinearity and optical dispersion. Recent developments in dispersion engineering on a chip are proving to be key enablers of high-efficiency integrated optical pulse compression. We review the recent advances made in optical pulse compression based on nonlinear photonic chips, as well as the future outlook and challenges that remain to be solved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.