Abstract
Nonlinear frequency conversion in 2D ${\ensuremath{\chi}}^{(2)}$ photonic crystals is theoretically studied. Such a crystal has a 2D periodic nonlinear susceptibility, and a linear susceptibility which is a function of the frequency, but constant in space. It is an in-plane generalization of 1D quasi-phase-matching structures and can be realized in periodic poled lithium niobate or in GaAs. An interesting property of these structures is that new phase-matching processes appear in the 2D plane as compared to the 1D case. It is shown that these in-plane phase-matching resonances are given by a nonlinear Bragg law, and a related nonlinear Ewald construction. Applications as multiple-beam second-harmonic generation (SHG), ring cavity SHG, or multiple wavelength frequency conversion are envisaged.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.