Abstract
Phase interactions among signals of physical and physiological systems can provide useful information about the underlying control mechanisms of the systems. Physical and biological recordings are often noisy and exhibit nonstationarities that can affect the estimation of phase interactions. We systematically studied effects of nonstationarities on two phase analyses including (i) the widely used transfer function analysis (TFA) that is based on Fourier decomposition and (ii) the recently proposed multimodal pressure flow (MMPF) analysis that is based on Hilbert-Huang transform (HHT)-an advanced nonlinear decomposition algorithm. We considered three types of nonstationarities that are often presented in physical and physiological signals: (i) missing segments of data, (ii) linear and step-function trends embedded in data, and (iii) multiple chaotic oscillatory components at different frequencies in data. By generating two coupled oscillatory signals with an assigned phase shift, we quantify the change in the estimated phase shift after imposing artificial nonstationarities into the oscillatory signals. We found that all three types of nonstationarities affect the performances of the Fourier-based and the HHT-based phase analyses, introducing bias and random errors in the estimation of the phase shift between two oscillatory signals. We also provided examples of nonstationarities in real physiological data (cerebral blood flow and blood pressure) and showed how nonstationarities can complicate result interpretation. Furthermore, we propose certain strategies that can be implemented in the TFA and the MMPF methods to reduce the effects of nonstationarities, thus improving the performances of the two methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.