Abstract

Cardiac pulsatility causes a nonrigid motion of the brain. In multi-shot diffusion imaging this leads to spatially varying phase changes that must be corrected. A conjugate gradient based reconstruction is presented that includes phase changes measured using two-dimensional navigator echoes, coil sensitivity information, navigator-determined weightings, and data from multiple coils and averages.A multi-shot echo planar sequence was used to image brain regions where pulsatile motion is not uniform. Reduced susceptibility artifacts were observed compared to a clinical single-shot sequence. In a higher slice, fiber directions derived from single-shot data show distortions from anatomical scans by as much as 7 mm compared to less than 2 mm for our multi-shot reconstructions. The reduced distortions imply that phase encoding can be applied in the shorter left-right direction, enabling time savings through the use of a rectangular field of view. Higher resolution diffusion imaging in the spine permits visualization of a nerve root.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.