Abstract

This paper presents a study of examining nonlinear PD (NPD) control of multi-degree-of-freedom parallel manipulator systems for a generic task, i.e., trajectory tracking. The motivation of this study is the well-known observation that NPD control method can offer a means to improve the performance of plant systems. This study is also to examine how the mechanical structure of the manipulator affects dynamic performance. The design of mechanical structure follows the design-for-control (DFC) principle, and in particular it renders to a full force balanced mechanism. Simulation studies confirm that the concurrent consideration of mechanical structure design and NPD control can obtain good trajectory tracking performance for the parallel manipulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.