Abstract
In this letter, we propose a method aiming at reducing the noise in hyperspectral images based on the nonlinear generalization of principal component analysis (NLPCA). NLPCA is performed by an autoassociative neural network (AANN) that has the hyperspectral image as input and is trained to reconstruct the same image at the output. Due to its topology, characterized by a bottleneck layer, the nonlinear AANN forces the hyperspectral image to be projected in a lower dimensionality feature space by removing noise and both linear and nonlinear correlations between spectral bands. This process permits to obtain enhancements in terms of the quality of the reconstructed hyperspectral image. The results conducted on different hyperspectral images are qualitatively and quantitatively discussed and demonstrate the potentialities of the proposed method, as compared with similar approaches such as PCA and kernel PCA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.