Abstract

Pavement foundation geomaterials, i.e., fine-grained subgrade soils and unbound aggregates used in untreated base/subbase layers, exhibit nonlinear behavior under repeated wheel loads. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more accurately the pavement resilient responses, such as stress, strain, and deformation. Many general-purpose FE programs have been used to predict such pavement responses under various traffic loading conditions while not considering properly material characterizations of the unbound aggregate base/subbase and subgrade soil layers. This paper describes the recent pavement FE modeling research efforts at the University of Illinois focused on using both the specific-purpose axisymmetric and general-purpose three-dimensional (3D) FE programs for flexible pavement analyses. To properly characterize the resilient beh...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.