Abstract

Monte Carlo techniques are used to model nonlinear particle acceleration in parallel collisionless shocks of various speeds, including mildly relativistic ones. When the acceleration is efficient, the backreaction of accelerated particles modifies the shock structure and causes the compression ratio, r, to increase above test-particle values. Modified shocks with Lorentz factors, γ 0≲3, can have compression ratios considerably >3 and the momentum distribution of energetic particles no longer follows a power law relation. These results may be important for the interpretation of gamma-ray bursts if mildly relativistic internal and/or afterglow shocks play an important role accelerating particles that produce the observed radiation. For γ 0≳10, r approaches 3 and the so-called ‘universal’ test-particle result of N( E)∝ E −2.3 is obtained for sufficiently energetic particles. In all cases, the absolute normalization of the particle distribution follows directly from our model assumptions and is explicitly determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.