Abstract

AbstractIn this study, vibration control problem is considered for a coordinative master–slave two-link rigid–flexible manipulator. By the help of Hamilton's principle, the dynamic model of the master–slave two-link rigid–flexible manipulator is expressed using nonlinear partial differential equations (PDEs). Based on the nonlinear PDE model, we propose a novel coordination controller for the master–slave system. The proposed controller can achieve the following three objectives: (1) making the master manipulator track the given angles; (2) making the slave manipulator track the angles of the master manipulator; and (3) repressing the deflection and vibration of both the master and the slave flexible manipulators. Stability analysis of the closed-loop system is proven by LaSalle's invariance principle. Two simulation cases are given to validate the effectiveness of the coordination controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call