Abstract

Battery packs used in electrified vehicles exhibit high modal density due to their repeated cell substructures. If the excitation contains frequencies in the region of high modal density, small commonly occurring structural variations can lead to drastic changes in the vibration response. The battery pack fatigue life depends strongly on their vibration response; thus, a statistical analysis of the vibration response with structural variations is important from a design point of view. In this work, parametric reduced-order models (PROMs) are created to efficiently and accurately predict the vibration response in Monte Carlo calculations, which account for stochastic structural variations. Additionally, an efficient iterative approach to handle material nonlinearities used in battery packs is proposed to augment the PROMs. The nonlinear structural behavior is explored, and numerical results are provided to validate the proposed models against full-order finite element approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.