Abstract

Methods for nonlinear system identification are often classified, based on the employed model form, into parametric (nonlinear differential or difference equations) and nonparametric (functional expansions). These methods exhibit distinct sets of advantages and disadvantages that have motivated comparative studies and point to potential benefits from combined use. Fundamental to these studies are the mathematical relations between nonlinear differential (or difference, in discrete time) equations (NDE) and Volterra functional expansions (VFE) of the class of nonlinear systems for which both model forms exist, in continuous or discrete time. Considerable work has been done in obtaining the VFE's of a broad class of NDE's, which can be used to make the transition from nonparametric models (obtained from experimental input-output data) to more compact parametric models. This paper presents a methodology by which this transition can be made in discrete time. Specifically, a method is proposed for obtaining a parametric NARMAX (Nonlinear Auto-Regressive Moving-Average with exogenous input) model from Volterra kernels estimated by use of input-output data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call