Abstract

Vibration analysis is the most used technique for defect monitoring failures of industrial gearboxes. Detection and diagnosis of gear defects are thus crucial to avoid catastrophic failures. It is therefore important to detect early fault symptoms. This paper introduces signal processing methods based on approximate entropy (ApEn), sample entropy (SampEn), and Lempel-Ziv Complexity (LZC) for detection of gears defects. These methods are based on statistical measurements exploring the regularity of vibratory signals. Applied to gear signals, the parameter selection of ApEn, SampEn, and LZC calculation is first numerically investigated, and appropriate parameters are suggested. Finally, an experimental study is presented to investigate the effectiveness of these indicators and a comparative study with traditional time domain indicators is presented. The results demonstrate that ApEn, SampEn, and LZC provide alternative features for signal processing. A new methodology is presented combining both Kurtosis and LZC for early detection of faults. The results show that this proposed method may be used as an effective tool for early detection of gear faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.