Abstract

In this paper, an analytical approximate solution is constructed for a rotor-AMB system that is subjected to primary resonance excitations at the presence of 1:1 internal resonance. We obtain an approximate solution applying the method of multiple scales, and then we conducted the system bifurcation analyses. The stability of the system is investigated applying Lyapunov’s first method. The effects of the different parameters on the system behavior are investigated. The analytical results showed that the rotor-AMB system exhibits a variety of nonlinear phenomena such as bifurcations, coexistence of multiple solutions, jump phenomenon, and sensitivity to initial conditions. Finally, the numerical simulations are performed to demonstrate and validate the accuracy of the approximate solutions. We found that all predictions from analytical solutions are in excellent agreement with the numerical integrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.