Abstract

Nonlinear oscillations of a layer of an ideal incompressible perfectly conducting liquid on the surface of a charged melting hailstone (solid core) are studied using analytical asymptotic calculations of the second order of smallness in initial deformation amplitude. Specifically, it is shown that, when the thickness of the layer is much less than the characteristic linear size (radius) of the solid core, the size of the core considerably influences the amplitudes of capillary oscillation modes arising on the surface of the charged layer via nonlinear interaction. It is found that, as the liquid layer on the surface of the solid core gets thinner, the energy in the spectrum of nonlinearly excited modes is redistributed with its maximum shifting toward higher (larger number) modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call