Abstract
An analytical asymptotic solution to the problem of nonlinear oscillations of a charged drop moving with acceleration through a vacuum in a uniform electrostatic field is found. The solution is based on a quadratic approximation in two small parameters: the eccentricity of the equilibrium spheroidal shape of the drop and the amplitude of the initial deformation of the equilibrium shape. In the calculations carried out in an inertial frame of reference with the origin at the center of mass of the drop, expansions in fractional powers of the small parameter are used. Corrections to the vibration frequencies are always negative and appear even in the second order of smallness. They depend on the stationary deformation of the drop in the electric field and nonlinearly reduce the surface charge critical for development of the drops’s instability. It is found that the evolutions of the shapes of nonlinearly vibrating unlike-charged drops differ slightly owing to inertial forces.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.