Abstract

Background Although sympathetic activation may induce ventricular fibrillation (VF), little is known about how the autonomic nervous system influences its nonlinear organization. This study tested the hypothesis that autonomic receptor activation altered the nonlinear organization of VF. Methods Isolated rabbit hearts underwent retrograde perfusion with acetylcholine or norepinephrine added to the perfusate. Voltage-sensitive fluorescent images of the ventricular surface were obtained during sustained VF. Concurrent electrocardiogram and optical pixel signals underwent recurrence quantification analysis, which detects and quantifies patterns of repeating data sequences. Recurrence quantification analysis variables signify different aspects of nonlinearity. Results Recurrence quantification analysis results showed that the electrocardiogram and pixel signals did not exhibit the same pattern of nonlinear organization during VF. Recurrence quantification analysis values were not dramatically altered from baseline by acetylcholine and norepinephrine but instead exhibited considerable variation. Conclusion An alteration in autonomic milieu diminished the nonlinear organization of VF, that is, autonomic receptor activation made VF less likely to behave in a repetitive pattern over time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.