Abstract

The equivalence between nonlinear ordinary differential equations (ODEs) and linear partial differential equations (PDEs) was recently revisited by Smith, who used the equivalence to transform the ODEs of Newtonian dynamics into equivalent PDEs, from which analytical solutions to several simple dynamical problems were derived. We show how this equivalence can be used to derive a variety of exact solutions to the PDEs describing advection in fluid dynamics in terms of solutions to the equivalent ODEs for the trajectories of Lagrangian fluid particles. The PDEs that we consider describe the time evolution of non-diffusive scalars, conserved densities, and Lagrangian surfaces advected by an arbitrary compressible fluid velocity field u(x, t). By virtue of their arbitrary initial conditions, the analytical solutions are asymmetric and three-dimensional even when the velocity field is one-dimensional or symmetrical. Such solutions are useful for verifying multidimensional numerical algorithms and computer codes for simulating advection and interfacial dynamics in fluids. Illustrative examples are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.