Abstract

Nonlinear photonic circuits with the ability to generate and process signals all-optically have emerged in the past decade with superior performance to electronic chips. In particular, crystalline silicon has become a leading platform for integrated nonlinear optics. More recently, hydrogenated amorphous silicon emerged as a promising alternative to crystalline silicon due to its large nonlinearity. In this paper, we review recent research on nonlinear optical interactions in and applications of hydrogenated amorphous silicon nanophotonic devices. This new material platform enables the capability of multilayer CMOS-compatible photonic-integrated circuits with low-power requirements for high-speed optical signal processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.