Abstract

The application of various nonlinear optical laser spectroscopic techniques to plasma diagnostics are reported. The techniques discussed in this paper are two-photon laser induced fluorescence spectroscopy, double-resonant four-wave mixing, coherent anti-Stokes Raman-scattering (CARS), and a combination of emission spectroscopy and CARS. They are applied to measurements of atomic hydrogen densities, molecular temperature, chemical composition, electric field distributions, and vibrational population distribution. The basic principles are described and important aspects of the methods are discussed in context with application to various kinds of discharges at low and elevated pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.