Abstract

Nonlinear optical techniques (second-harmonic and sum-frequency generation) have been used to study the structure of organic molecules that are confined and compressed between a lens and a flat surface. The molecules studied include self-assembled monolayers of n-octadecyltriethoxysilane and Langmuir-Blodgett films of stearic acid, octadecylalcohol, octadecylamine, and a liquid-crystal molecule 4'-n-octyl-4-cyanobiphenyl (8CB). The contact area created by elastic deformation of the flat surface and lens under pressure was large enough to contain the entire laser beam (>100 \ensuremath{\mu}m radius at \ensuremath{\approxeq}10 MPa for R=15 cm). Under these conditions, the sum-frequency generation (from ${\mathrm{CH}}_{3}$ and OH stretch modes) and second-harmonic generation (8CB) signals were found to decrease by a factor between 100 and 1000 times the original signal. This indicates vanishing of the second-order monolayer susceptibility due to disorder of the head groups and/or flattening of the molecular axis so that they lie parallel to the surface. The phenomenon was reversible and the nonlinear signals recovered completely upon removal of the pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.