Abstract

The strong interest in space-division multiplexing of classical communication signals has resulted in development of optical fibers that support propagation of multiple modes. This has paved the way for progress in signal processing using multiple modes and four-wave mixing between these. More specifically, careful design and knowledge of optical properties of individual modes enables phase matching in four-wave mixing that is otherwise not possible with single-mode fibers. This enables signal processing using four-wave mixing between higher-order modes for e.g. frequency conversion over a wide bandwidth. In addition, processing and creation of quantum states has also been demonstrated using four-wave mixing, including generation of photon pairs. In this work we review recent progress in signal processing and generation of quantum states using four-wave mixing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call