Abstract
This study reports the influence of deposition temperature (573 K-773 K) on the microstructural, linear and nonlinear optical properties of zinc oxide nano thin films synthesized using the chemical spray pyrolysis method. Synthesized films are polycrystalline, exhibiting a dominant (101) orientation, for which the crystallite size is found to increase with deposition temperature up to 723 K followed by a decrease. Concurrently, the deposit prepared at 723 K showed improved electrical properties, i.e. higher charge carrier concentration and mobility. Optical studies reveal increased transmittance in the visible region and a gradual increase of optical bandgap with deposition temperature. The photoluminescence studies show a near-white light emission for all thin films, however, the density of defect states was comparatively higher for thin films deposited at lower temperatures. A saturable absorption behaviour was observed due to the presence of defects. The thin films show a negative refractive index with self-defocusing phenomena. The total nonlinear susceptibility is found to decrease with increasing deposition temperature, and the solution-processed functional thin films thus have potential implications for nonlinear optical applications such as nonlinear optical switching, optical memory management, and saturable absorbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.