Abstract

This study reports the influence of deposition temperature (573 K-773 K) on the microstructural, linear and nonlinear optical properties of zinc oxide nano thin films synthesized using the chemical spray pyrolysis method. Synthesized films are polycrystalline, exhibiting a dominant (101) orientation, for which the crystallite size is found to increase with deposition temperature up to 723 K followed by a decrease. Concurrently, the deposit prepared at 723 K showed improved electrical properties, i.e. higher charge carrier concentration and mobility. Optical studies reveal increased transmittance in the visible region and a gradual increase of optical bandgap with deposition temperature. The photoluminescence studies show a near-white light emission for all thin films, however, the density of defect states was comparatively higher for thin films deposited at lower temperatures. A saturable absorption behaviour was observed due to the presence of defects. The thin films show a negative refractive index with self-defocusing phenomena. The total nonlinear susceptibility is found to decrease with increasing deposition temperature, and the solution-processed functional thin films thus have potential implications for nonlinear optical applications such as nonlinear optical switching, optical memory management, and saturable absorbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.