Abstract

The ground state energy of an exciton and biexciton states, in a GaN/AlxGa1-xN quantum disk are investigated by the variation method, within envelope function and effective mass approximations. Exciton and biexciton binding energy, and the dipole moments related to the transition between ground, exciton and biexciton states, are calculated as a function of quantum disk geometry. The optical nonlinearity via the exciton and biexciton states is studied on the basis of a three level model through the density matrix formalism. The behavior of different terms of third order susceptibility χ(3), are studied around resonance frequencies and for different geometries of disk. The effect of values of the decay rates on χ(3) are studied. It is found that these values have remarkable effect on the second term of, χ(3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.