Abstract

Reduced dimensionality and quantum confinement in conjugated organic and polymer structures enhance the effects of electron correlation on virtual electronic excitation processes and nonlinear-optical responses. A microscopic many-electron description of the third-order susceptibilities γijkl(−ω4; ω1, ω2, ω3) of conjugated structures is reviewed for one-dimensional chains and extended to two-dimensional conjugated cyclic structures. Electron correlation effects in effectively reduced dimensions result in highly correlated π-electron virtual excitations that lead to large, ultrafast nonresonant nonlinear-optical responses. The increase of dimensionality from linear to cyclic chains is found to reduce the nonresonant isotropic third-order susceptibility γg. Resonant experimental studies of saturable absorption and optical bistability in ultrathin films of quasi-two-dimensional naphthalocyanine oligomers are also presented. In the saturable-absorption studies, the resonant nonlinear refractive index n2 was measured to be 1 × 10−4 cm2/kW in the wavelength range of operating laser diodes. Based on this result, electronic absorptive optical bistability is observed on a nanosecond time scale in a nonlinear Fabry–Perot interferometer employing the saturably absorbing naphthalocyanine film as the nonlinear-optical medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.