Abstract

Improving nonlinear optics efficiency is currently one of the hotspots in modern optical research. Moreover, with the maturity of nonlinear optical microscope systems, more and more biology, materials, medicine, and other related disciplines have higher imaging resolution and detection accuracy requirements for nonlinear optical microscope systems. Surface plasmons of metal nanoparticle structures could confine strong localized electromagnetic fields in their vicinity to generate a new electromagnetic mode, which has been widely used in surface-enhanced Raman scattering, surface-enhanced fluorescence, and photocatalysis. In this review, we summarize the mechanism of nonlinear optical effects and surface plasmons and also review some recent work on plasmon-enhanced nonlinear optical effects. In addition, we present some latest applications of nonlinear optical microscopy system research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.