Abstract

Melt-quenched glasses of organic-inorganic hybrid crystals, i.e., hybrid glasses, have attracted increasing attention as an emerging class of hybrid materials with beneficial processability and formability in the past years. Herein, we present a new hybrid crystal, (Ph3 PEt)3 [Ni(NCS)5 ] (1, Ph3 PEt+ =ethyl(triphenyl)phosphonium), crystallizing in a polar space group P1 and exhibiting thermal-induced reversible crystal-liquid-glass-crystal transitions with relatively low melting temperature of 132 °C, glass-transition temperature of 40 °C, and recrystallization on-set temperature of 78 °C, respectively. Taking advantage of such mild conditions, we fabricated an unprecedented hybrid glass-ceramic thin film, i.e., a thin glass uniformly embedding inner polar micro-crystals, which exhibits a much enhanced intrinsic second-order nonlinear optical effect, being ca. 25.6 and 3.1 times those of poly-crystalline 1 and KH2 PO4 , respectively, without any poling treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.