Abstract

Two-photon fluorescence and second harmonic generation microscopy have enabled functional and morphological in vivo imaging. However, in vivo applications of those techniques to living animals are limited by bulk optics on a bench top. Fortunately, growing functionality of fiber-optic devices and miniaturization of scanning mirrors stimulate the race to develop nonlinear optical endoscopy. In this paper, we report on a prototype of a nonlinear optical endoscope based on a double-clad photonic crystal fiber to improve the detection efficiency and a MEMS mirror to steer the light at the fiber tip. The miniaturized fiber-optic nonlinear microscope is characterized by rat esophagus imaging. Line profiles from the rat tail tendon and esophagus prove the potential of the technology in in vivo applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.