Abstract

In this paper the problem of detecting and isolating sensor faults on a certain class of nonlinear systems is considered. A procedure to design a bank of extended H ∞ observers for sensor fault detection and isolation (FDI) is carried out: each observer is composed of an open loop nonlinear part replicating the system dynamics and a linear feedback action. Sufficient conditions for the synthesis of the feedback action are provided in terms of linear matrix inequality (LMI) feasibility problems. Constraints on the position of the observer poles are added to fasten the residual generation dynamics and to avoid low-damped and/or high-frequency modes. Numerical results on the longitudinal dynamics of a commercial aircraft are provided to show the practical applicability of the proposed technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.