Abstract

Various centrifuge model tests on the pile foundations were performed to investigate fundamental characteristics of a pile-soil-foundation system recently, but it is hard to find numerical analysis results of a pile foundation system considering the nonlinear behavior of soil layers due to the dynamic excitations. Numerical analyses for a pile-soil system were carried out to verify the experimental results of centrifuge model tests. Centrifuge model tests were performed at the laboratory applying 1.5Hz sinusoidal base input motions, and nonlinear numerical analyses were performed utilizing a finite element program of P3DASS in the frequency domain and applying the same input motions with the intensities of 0.05 g~0.38 g. Nonlinear soil properties of soil elements were defined by Ramberg-Osgood soil model for the nonlinear dynamic analyses. Nonlinear numerical analyses with the P3DASS program were helpful to predict the trend of experimental responses of a centrifuge model efficiently, even though there were some difficulties in processing analytical results and to find out unintended deficits in measured experimental data. Also nonlinear soil properties of elements in the system can be estimated adequately using an analytical program to compare them with experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.