Abstract

AbstractThe concept of lumped optical nanoelements (or metactronics), wherein nanometer‐scale structures act as nanoinductors, nanocapacitors, and nanoresistors, has attracted a great deal of attention as a simple toolbox for engineering different nanophotonic devices in analogy with microelectronics. While recent studies of the topic have been predominantly focused on linear functionalities, nonlinear dynamics in microelectronic devices plays a crucial role and provides a majority of functions, employed in modern applications. Here, the metactronics paradigm is extended and nonlinear dynamical modalities are added to those nanophotonic devices that have never been associated with optical nanoantennas. Specifically, it is shown that nonlinear dimer nanoantennae can operate in the regimes of tristable and astable multivibrators as well as chaos generators. The physical mechanism behind these modalities relies on the Kerr‐type nonlinearity of nanoparticles in the dimer enhanced by a dipolar localized surface plasmon resonance. This allows one to provide a positive nonlinear feedback at moderate optical intensities, leading to the desired dynamical behavior via tuning the driving field parameters. The findings shed light on a novel class of nonlinear nanophotonic devices with a tunable nonlinear dynamical response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call