Abstract
We propose Time–Space Threshold Vector Error Correction (TS-TVEC) model for short term (hourly) traffic state prediction. The theory and method of cointegration with error correction mechanism is employed in the general design of the new statistical model TS-TVEC. An inherent connection between mathematical form of error correction model and traffic flow theory is revealed through the transformation of the well-known Fundamental Traffic Diagrams. A threshold regime switching framework is implemented to overcome any unknown structural changes in traffic time series. Spatial cross correlated information is incorporated with a piecewise linear vector error correction model. A Neural Network model is also constructed in parallel to comparatively test the effectiveness and robustness of the new statistical model. Our empirical study shows that the TS-TVEC model is an effective tool that is capable of modeling the complexity of stochastic traffic flow processes and potentially applicable to real time traffic state prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.