Abstract
A coordinated control strategy is often used to ensure a thermal power plant to have a higher rate of load change, but without violating the thermal constraints. Although model predictive control has been widely used for controlling power plant, handling input constraints is a major problem especially as these plants are nonlinear. Two alternative methods of exploiting the nonlinear predictive control are presented in this paper. One is the input-output feedback linearization technique based on a suitably chosen approximated linear model. The other is based on neuro-fuzzy networks to represent a nonlinear dynamic process using a set of local models. From the criteria based on the integral absolute errors and the relative optimization time for completing the simulation, it is shown that the performance of the coordinated control of a steam-boiler generation plant using these two nonlinear predictive methods are better than the conventional predictive method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.