Abstract

We propose a novel nonlinear multiple-image encryption based on mixture retrieval algorithm and phase mask multiplexing in Fresnel domain. The encryption process is realized by applying the Yang–Gu algorithm cascaded with a modified Gerchberg–Saxton algorithm (MGSA), which generate a private key and an intermediate phase to ensure high security. In the proposed method, all images are encoded separately into a phase only function (POF). Obtained POFs are integrated into a final POF based on phase mask multiplexing. As a result, cross-talk noise is removed resulting in a large improvement of the encryption capacity. A spatial light modulator (SLM) based optical setup has been suggested for decryption. Numerical simulations are presented to demonstrate the feasibility and effectiveness of the proposed system. Results also indicate the high robustness of the system against occlusion and noise attacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.